590+ Series
 DC Digital Drive

Frame 6

Addendum

HA466833U001 Issue 2

Compatible with Version 7.x Software

WARRANTY

Parker SSD Drives warrants the goods against defects in design, materials and workmanship for the period of 12 months from the date of delivery on the terms detailed in Parker SSD Drives Standard Conditions of Sale IA500504.

Parker SSD Drives reserves the right to change the content and product specification without notice.

Safety Information

Requirements

IMPORTANT: Please read this information BEFORE installing the equipment.

Intended Users

This manual is to be made available to all persons who are required to install, configure or service equipment described herein, or any other associated operation.

The information given is intended to highlight safety issues, EMC considerations, and to enable the user to obtain maximum benefit from the equipment.

Complete the following table for future reference detailing how the unit is to be installed and used.

INSTALLATION DETAILS		
Serial Number (see product label)		
Where installed (for your own information)		
Unit used as a: (refer to Certification for the Inverter)	\square Component	\square
Unit fitted:	\square Wall-mounted	\square Enclosure

Application Area

The equipment described is intended for industrial motor speed control utilising AC induction or AC synchronous machines.

Personnel

Installation, operation and maintenance of the equipment should be carried out by qualified personnel. A qualified person is someone who is technically competent and familiar with all safety information and established safety practices; with the installation process, operation and maintenance of this equipment; and with all the hazards involved.

Product Warnings

	Caution Risk of electric shock	Caution Refer to documentation		Earth/Ground Protective Conductor Terminal

Safety Information

Hazards

DANGER! - Ignoring the following may result in injury

1. This equipment can endanger life by exposure to rotating machinery and high voltages.
2. The equipment must be permanently earthed due to the high earth leakage current, and the drive motor must be connected to an appropriate safety earth.
3. Ensure all incoming supplies are isolated before working on the equipment. Be aware that there may be more than one supply connection to the drive.
4. There may still be dangerous voltages present at power terminals (motor output, supply input phases, DC bus and the brake, where fitted) when the motor is at standstill or is stopped.
5. For measurements use only a meter to IEC 61010 (CAT III or higher). Always begin using the highest range. CAT I and CAT II meters must not be used on this product.
6. Allow at least 5 minutes for the drive's capacitors to discharge to safe voltage levels ($<50 \mathrm{~V}$). Use the specified meter capable of measuring up to 1000 V dc $\&$ ac rms to confirm that less than 50 V is present between all power terminals and earth.
7. Unless otherwise stated, this product must NOT be dismantled. In the event of a fault the drive must be returned. Refer to "Routine Maintenance and Repair".

WARNING! - Ignoring the following may result in injury or damage to equipment

SAFETY

Where there is conflict between EMC and Safety requirements, personnel safety shall always take precedence.

- Never perform high voltage resistance checks on the wiring without first disconnecting the drive from the circuit being tested.
- Whilst ensuring ventilation is sufficient, provide guarding and /or additional safety systems to prevent injury or damage to equipment.
- When replacing a drive in an application and before returning to use, it is essential that all user defined parameters for the product's operation are correctly installed.
- All control and signal terminals are SELV, i.e. protected by double insulation. Ensure all external wiring is rated for the highest system voltage.
- Thermal sensors contained within the motor must have at least basic insulation.
- All exposed metalwork in the Inverter is protected by basic insulation and bonded to a safety earth.
- RCDs are not recommended for use with this product but, where their use is mandatory, only Type B RCDs should be used.

EMC

- In a domestic environment this product may cause radio interference in which case supplementary mitigation measures may be required.
- This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product.
- This is a product of the restricted sales distribution class according to IEC 61800-3. It is designated as "professional equipment" as defined in EN61000-3-2. Permission of the supply authority shall be obtained before connection to the low voltage supply.

CAUTION:

APPLICATION RISK

- The specifications, processes and circuitry described herein are for guidance only and may need to be adapted to the user's specific application. We can not guarantee the suitability of the equipment described in this Manual for individual applications.

RISK ASSESSMENT

Under fault conditions, power loss or unintended operating conditions, the drive may not operate as intended. In particular:

- Stored energy might not discharge to safe levels as quickly as suggested, and can still be present even though the drive appears to be switched off
- The motor's direction of rotation might not be controlled
- The motor speed might not be controlled
- The motor might be energised

A drive is a component within a drive system that may influence its operation or effects under a fault condition.
Consideration must be given to:

- Stored energy
- Supply disconnects
- Sequencing logic
- Unintended operation

Contents

Contents Page
Introduction 1-2
Dimensions 1-3
Cubicle Details 1-3
Cooling 1-3
Assembling the Drive 1-4
Moving the AC Supply Terminals 1-5
Mounting the Phase Assemblies 1-6

- Backplate Drilling Procedure 1-7
- Connecting the Fishplates 1-7
- Temporary Hanging Bolts 1-8
- Offering-Up the Phase Assemblies 1-8
- Tightening the Drive 1-9
Fitting the Control Panel Assembly 1-9
- Terminal Connections 1-10
Electrical Installation 1-12
Connection Diagram 1-13
Repair 1-14
AC Fuse Replacement (Non-Regenerative Unit - 2Q) 1-14
DC Fuse Replacement (Regenerative Unit - 4Q) 1-15
Replacing a Phase Assembly 1-17
Replacing a Fan 1-18
Technical Specifications 1-19
Environmental Details 1-19
EMC Compliance 1-19
Electrical Ratings - Power Circuit 1-20
Power Supply Details 1-20
Auxiliary Power Supply Details 1-20
AC Line Choke 1-21
External AC Supply (RFI) Filters 1-21
Power Semiconductor Protection Fuses 1-21
Power Supply Fuses 1-21
Field Fuses 1-21
Earthing/Safety Details 1-22
Terminal Definitions (Digital/Analog Inputs \& Outputs) 1-22
Terminal Information - Control Board 1-23
Terminal Information - Power Terminals. 1-27
Terminal Information - Option Boards 1-28
Wiring Requirements for EMC Compliance 1-28
Cooling Fans 1-28
Spares 1-29
Standard Equipment 1-31
Power Board Circuit Description - AH469419 1-31
Power Board LED Trip Information 1-31
Understanding the Product Code 1-32
Model Number 1-32
Certificates 1-34

IMPORTANT: Read Chapter 12: "Certification for the Converter" in the main Product Manual before installing this unit.

Read this Addendum in conjunction with the 590+ Product Manual HA466461U003, referring to instructions and examples supplied for the Frame H.

Below is a quick guide showing where information can be found:

Included in this Addendum:

- Assembly
- Mechanical Installation
- Electrical Installation short explanation
- Repair
- Trip LEDS
- Technical Specifications
- Standard Equipment
- Product Code
- Certificates

Refer to the Product Manual (Frame H) for:

- Electrical Installation
full explanation
- Operation
- The Operator Station
- Programming
- Trips and Fault Finding
- Routine Maintenance
- Control Loops
- Parameter Specifications
- Optional Equipment
- Serial Communications
- The Default Application

All units are available as a:
590+ : 4Q 3-phase, fully controlled, anti-parallel thyristor bridge configuration 591+ : 2Q 3-phase, fully controlled thyristor bridge configuration

The $590+$ Frame 6 is a high power DC drive and is supplied as a kit of parts ready for mounting onto the back panel of an enclosure. The drive can be arranged to have the AC input terminals either at the top or the bottom of the drive.

Note: The phase assemblies must always be mounted with the fans at the bottom, however, the AC Supply Terminals can be moved to the top of the drive. Refer to page 5.
A kit contains three phase assemblies (each having the same rating), a control panel assembly, and fishplates. Fishplates are used to inter-connect the DC outputs of the three phase assemblies to produce a 6-pulse stack.

The control panel assembly mounts onto the front of the phase assemblies. The signals to-andfrom the control panel assembly provide the operation of the drive.
Phase assemblies are available in three different ratings, at two different voltages, and in a two thyristor (2Q, non-regenerative) or four thyristor (4Q, regenerative) configuration.

When constructed, the drive is physically the same size for all ratings or configuration.

AC

A Phase Assembly

Dimensions

A	B	C	D	E
686 (27.00) Refer to page 6 for terminal and fishplate sizes	$715 \text { (28.15) }$	378 (14.88)	62 (2.44)	57 (2.24)
Dimensions are in millimetres (inches)				
Weights:				

Cubicle Details

The drive must be mounted inside a cubicle that complies with the European safety standards VDE 0160 (1994)/EN50178 (1998) - it must require a tool for opening.

Cooling

The assembled drive produces power (heat) losses of approximately 3 times the rated power output current. For example, a 2000A output current will produce a power loss of 6000 W .

It is necessary to remove this heat by fitting fans in the roof of the enclosure. A suitable fan assembly is available from Parker SSD Drives, part number LA466038. The assembly contains two fans that can be connnected in parallel or series to achieve 115 Vac or 230 Vac operation.

Fan Rating : 115 V ac $50 \mathrm{~Hz}, 1.67 \mathrm{~A}, 177 \mathrm{~W}, 2750 \mathrm{rpm}$, motor run capacitor $18 \mu \mathrm{~F}$.

Caution

Use proper lifting techniques when lifting and moving the unit.

$\begin{array}{ll}1 & \text { Phase assemblies - L1, L2, L3 } \\ 2 \text { Fishplate }\end{array}$

3 Control Panel Assembly
4 Front Cover

The drive is assembled in the following order:

1. Mount the phase assemblies onto the backplate
2. Inter-connect the phase assemblies using the fishplates
3. Secure the control panel assembly onto the phase assemblies
4. Connect all signal cables and ribbons
5. Fit the front cover
6. Connect the plugs for the control wiring, auxiliary supply and field connections

To prepare for installation:

1. Remove the push-fit control terminals (A) from the control panel assembly.
2. Unscrew and remove the Power Terminals (B).
3. Remove the four screws and washers (C) securing the front cover to the control panel assembly.
4. Remove the front cover (D) from the control panel assembly.

Moving the AC Supply Terminals

The AC supply terminals - L1, L2 \& L3 - can be made available at the top or bottom of the drive. The factory-delivered drive has the AC terminals in the lower position.

It only takes a few minutes to rotate the AC terminals to the upper position.

1. Remove the fixings that secure the Phase Assembly front cover.
2. Remove the two screws on the front of the phase assembly moulding that secure the handle in place. The handle is located at the top of the phase assembly. It looks like another AC terminal but it is electrically isolated. It is there to assist in handling the phase assembly and is used when securing the stabilising bracket. Refer to "Offering-Up the Phase Assemblies", page 8.

3. Withdraw the handle from the phase assembly.
4. Slowly remove the central bolt and washer from the AC busbar and catch the ACCT and large washer that are secured by the bolt. Remove the ACCT and large washer.
5. Withdraw the AC busbar from the phase assembly.
6. Flip the AC busbar over (see below) and slide the AC busbar into position through the end of the Phase Assembly (upper position) and secure the ACCT and large washer with the central bolt and washer. Torque to 42 Nm ($31 \mathrm{ft} . \mathrm{lbf}$).
7. Fit the handle to the lower position and secure using the two screws. Hand-tighten.
8. Refit the Phase Assembly front panel and secure with four screws and washers.

Fan at bottom of phase assembly

Mounting the Phase Assemblies

The three phase assemblies are mounted vertically onto a solid, flat, vertical backplate inside the cubicle, with the fans at the bottom.

A	B	C	D
$24(0.94)$	$23(0.91)$	$72(2.83)$	$144(5.67)$
E	F	G	H
$247.5(9.74)$	$319.5(12.58)$	$391.5(15.41)$	$495(19.49)$
J	K	L	M
$567(22.32)$	$639(25.16)$	$732(28.82)$	$35.5(1.40)$
N	P	Q	
$35(1.38)$	$678(26.69)$	712 (28.03)	
	Dimensions are in millimetres (inches)		

:\% Temporary Hanging: A temporary hanging point is provided to hang the unit on before securing the phase assembly to the backplate at the four corners.

Backplate Drilling Procedure

Cover any units already mounted to the backplate to protect them from stray metal filings before drilling the mounting holes.

Refer to the diagram on the previous page and drill the mounting holes into the backplate. The holes must be positioned accurately.

For each phase assembly:

- Drill 5 holes to suit M10 flush-fitting inserts. Fit the nut inserts.

IMPORTANT: The nut inserts MUST be flush-fitting so that the phase assembly foot rests on the backpanel. If the phase assembly is mounted incorrectly it will damage the moulding.

Connecting the Fishplates

Before fitting the Phase Assemblies to the back panel, loosely fit the fishplates to the right hand side terminals (A+, A-) of each Phase Assembly.
The fishplates are fitted with M10 nut inserts. Secure the fishplates behind the terminals using M10 bolts ($6: 6$ steel grade) and spring disc washers (preferred, or single coil spring washer). Hand tighten only.

Fitting the fishplate behind the terminal allows the phase assembly to easily be lifted away from adjacent phase assemblies and any associated busbar connections.

Note: $\quad 6: 6$ minimum steel grade bolts are recommended for all busbar connections and mounting duties.

Temporary Hanging Bolts

IMPORTANT: We strongly recommend using the temporary mounting hole to hang the unit on the backplate - the phase assemblies are heavy. This mounting point is not intended for permanent fixing.

- Fit M10 x 20 mm long bolts to the three "temporary hanging" mounting holes. Screw them in part of the way so that you can still see 12 mm of thread.

The phase assembly will temporarily hang on this portion of thread.

Offering-Up the Phase Assemblies

The phase assemblies are heavy. Use a proper lifting procedure to load them on to the fork lift. Note that the Phase Assembly is fitted with a handle, opposite the AC terminal, to improve handling.

A stabilising bracket is supplied to steady the phase assembly when using the fork lift. Secure the bracket to the AC terminal using two M10 bolts as shown below.

For each phase assembly:

- Lift the phase assembly by fork lift and hang it on the "temporary hanging" bolt.
- Secure the phase assembly on the backplate using 4 off M10 bolts and lock washers. Hand tighten only.
- Remove the "temporary hanging" bolt.
- Remove the stabilising bracket.

Attach the remaining fishplates:

- To DC motor terminals A+ and A- (whichever pair are to be used)
- To L1, L2 and L3 AC supply terminals

Tightening the Drive

When all the bolts are in place, tighten them to the following torques:

- mounting bolts (4 per phase assembly) : 32Nm (23.6 ft.lbf)
- fishplate bolts : 32Nm (23.6 ft.lbf)

Reminder : Remove the "temporary hanging" bolts.

Fitting the Control Panel Assembly

Fit the M6 x 16 mm support screw assemblies [screw, single coil spring washer \& plain washer] (A) to the central phase assembly (as shown below) and to the equivalent position at the bottom of the phase assembly. Screw them in only part of the way so that the control panel assembly can hang from them.

Top of central phase assembly

Offer-up the control panel assembly and hang it from the two central support screws (A).

Secure the gantry using the M6 x 16 mm support screw assemblies (B).
Tighten all screws to 4.5 Nm ($3.3 \mathrm{ft} . \mathrm{lbf}$).

Terminal Connections

The control panel assembly has connectors for each phase assembly. These are secured in such a way that the cables will only reach the correct terminals set: $1,2,3$ or 4 .

Note: Terminal sets 3 \& 4 feature similar 6-way connectors, however one is a male connector and the other a female, so they can't be fitted incorrectly.

Complete the same connections for each phase assembly, plus make the additional armature voltage feedback connection to the central Phase Assembly (shown below). Make sure the terminals are clipped together correctly.

Fit the push-fit control terminals (A) from the control panel assembly. Fit the screw-in power terminals (B).
This completes the building of the $590+$ Drive (other than attaching the front cover).

IMPORTANT: Please read the Safety Information on page Cont. $3 \& 4$ before proceeding.

WARNING!

Ensure that all wiring is electrically isolated and cannot be made "live" unintentionally by other personnel. The phase assembly metalwork (L1, L2 \& L3) is LIVE when the unit is switched on.

Refer to the Product Manual Chapter 3: "Installing the Converter" - Electrical Installation. Follow the wiring instructions for Frame H.

Control Connections

Connection Diagram

WARNING!

The phase assembly metalwork (L1, L2 \& L3) is LIVE when the unit is switched on. Isolate the entire 590+drive from electrical power before attempting to work on it.

Only qualified service personnel should attempt to repair or replace parts in the 590+.

AC Fuse Replacement (Non-Regenerative Unit - 2Q)

The AC fuse can be replaced in-situ. With the front of the drive removed (the Control Panel Assembly), the replacement should take about 20 minutes. Removing the Control Panel Assembly from the cubicle completely will make access easier, but requires the removal of all connections made to it. It may be possible to support the Control Panel Assembly ($11.25 \mathrm{~kg} / 25$ lbs) and sling it away from the Phase Assemblies far enough to gain access.

Removal

1. Loosen the retaining screws in the Field Controller plug. Unplug all connections to the Door Assembly (control connections) and the Field Controller (Auxiliary Plug and Field Plug).
2. Undo the fixings to remove the front cover from the Control Panel Assembly.
3. Disconnect the flying leads of the Control Panel Assembly from the three Phase Assemblies. Remove the external earth connection(s) made to the Front Cover.
4. Remove the $12 \mathrm{~mm} x$ M6 fixings in the four corners that secure the Control Panel Assembly. Loosen the top and bottom central support screws (but do not remove) and lift the Control Panel Assembly away from the three Phase Assemblies.
5. Remove the fixings that secure the failed Phase Assembly front cover.
6. Disconnect the fishplate connected to the AC Busbar.
7. Slowly remove the ACCT's fixing bolt and washer from the AC Busbar, supporting the ACCT and large (rubber) washer as you do so. Lower the ACCT to one side and remove the large washer.
8. The fuse is mounted on a plate. Remove this Fuse Assembly from the Phase Assembly.
9. On the bench, undo the central bolt from the Fuse Assembly taking note of the placement of washers and other parts.

Refitting

1. Refit the Fuse to the mounting plate. Torque to $45 \mathrm{Nm}(33 \mathrm{ft} . \mathrm{lbf})$. Fix the mounting plate to the Phase Assembly, securing it with the two bolts and washers. Torque to 32 Nm (23.6 ft.lbf).
2. Slide the AC Busbar into position in the Phase Assembly and secure the ACCT and large washer with the central bolt and washer. Torque to 45 Nm ($33 \mathrm{ft} . \mathrm{lbf}$).
3. Reconnect the AC Busbar's fishplate carrying the mains connection (L1, L2 or L3). Torque to $55 \mathrm{Nm}(40.6 \mathrm{ft} . \mathrm{lbf})$.
4. Refit the Phase Assembly front panel and secure with four screws and washers.
5. Offer up the Control Panel Assembly to the three Phase Assemblies and hang on the central support screws. Secure with 12 mm x M6 screws and washers.
6. Reconnect the flying leads of the Control Panel Assembly to the three Phase Assembly units. Tighten the retaining screws in the Field Controller plug. Refer to page 10.
7. Refit the front cover to the Control Panel Assembly, securing with the screws and washers. Connect the external earth to the Front Panel.

DC Fuse Replacement (Regenerative Unit - 4Q)

The DC fuse(s) can be replaced in-situ. With the front of the drive removed (the Control Panel Assembly), the replacement should take about 20 minutes. Removing the Control Panel Assembly from the cubicle completely will make access easier, but requires the removal of all connections made to it. It may be possible to support the Control Panel Assembly ($11.25 \mathrm{~kg} / 25$ lbs) and sling it away from the Phase Assemblies far enough to gain access.

Removal

1. Loosen the retaining screws in the Field Controller plug. Unplug all connections to the Door Assembly (control connections) and the Field Controller (Auxiliary Plug and Field Plug).
2. Undo the fixings to remove the front cover from the Control Panel Assembly.
3. Disconnect the flying leads of the Control Panel Assembly from the three Phase Assemblies. Remove the external earth connection(s) made to the Front Cover.
4. Remove the $12 \mathrm{~mm} x$ M6 fixings in the four corners that secure the Control Panel Assembly. Loosen the top and bottom central support screws (but do not remove) and lift the Control Panel Assembly away from the three Phase Assemblies.
5. Remove the four screws that secure the failed Phase assembly front panel. Remove the front panel.
6. Remove the bolts securing the fishplates to the DC Busbar nearest the failed fuse.
7. If the failed fuse is located underneath the AC busbar: slowly remove the ACCT's fixing bolt and washer from the AC Busbar, supporting the ACCT and large (rubber) washer as you do so. Remove the large washer and lower the ACCT to one side.
8. Unplug the lead connected to the microswitch that is fitted to the side of the Fuse Assembly.
9. The fuse is mounted on a plate. Remove the two bolts and washers that secure this plate to the Phase Assembly and lift away the Fuse Assembly and DC Busbar.
10. On the bench, undo the central bolt from the Fuse Assembly taking note of the placement of washers and other parts. Re-build the assembly with the new fuse. Tighten the DC Busbar bolt to 45 Nm ($33 \mathrm{ft} . \mathrm{lbf}$).

Refitting

1. Refit the Fuse to the Mounting Plate. Torque to 45 Nm ($33 \mathrm{ft} . \mathrm{lbf}$). Fix the mounting plate to the Phase Assembly, securing it with the two bolts and washers. Torque to 32 Nm ($23.6 \mathrm{ft} . \mathrm{lbf}$).
2. Plug the lead back onto the microswitch (removed earlier).
3. Slide the AC busbar into in the Phase Assembly and secure with the bolt and washer. Torque to 45 Nm ($33 \mathrm{ft} . \mathrm{lbf}$).
4. Refit the fishplates that connect to the DC Busbars. Torque to 55 Nm ($40.6 \mathrm{ft} . \mathrm{lbf}$).

5. Offer up the Control Panel

Assembly to the three Phase Assemblies and hang on the central support screws. Secure with $12 \mathrm{~mm} \times \mathrm{M} 6$ screws and washers.
6. Reconnect the flying leads of the Control Panel Assembly to the three Phase Assembly units. Tighten the retaining screws in the Field Controller plug. Refer to page 10.
7. Refit the front cover to the Control Panel Assembly, securing with the screws and washers. Connect the external earth to the Front Panel.

Replacing a Phase Assembly

Note: \quad The Non-Regen Phase Assembly (2Q) weighs 28 kg (62 lbs) The Regen Phase Assembly (4Q) weighs 33kg (73 lbs)
With the front of the drive removed (the Control Panel Assembly), the replacement should take about 20 minutes. Removing the Control Panel Assembly from the cubicle completely will make access easier, but requires the removal of all connections made to it. It may be possible to support the Control Panel Assembly ($11.25 \mathrm{~kg} / 25 \mathrm{lbs}$) and sling it away from the Phase Units far enough to gain access.

Removal

1. Remove the plugs for the control wiring, auxiliary supply and field connections (loosen the screws to remove the field plug). Remove the Protective Earth connections (PE).
2. Undo the fixings to remove the front cover from the Control Panel Assembly.
3. Disconnect the flying leads of the Control Panel Assembly from the three Phase Assemblies.
4. Remove the $12 \mathrm{~mm} \times$ M6 fixings in the four corners that secure the Control Panel Assembly. Loosen the
 top and bottom central support screws (but do not remove) and lift the Control Panel Assembly away from the three Phase Assemblies.
5. Remove the bolts securing the fishplates to the DC Busbars.
6. Fit an M10 x 20 mm long "temporary hanging" bolt to the "temporary hanging" mounting hole (top-centre) of the phase assembly to be removed. Screw it in loosely, leaving a few millimetres of thread still showing.
7. Remove the fixing bolts that hold the failed Phase Assembly onto the back panel. Lift it off the "temporary hanging" bolt. Refer to the note about weights at the top of the page.

Refitting

1. Hang the new Phase assembly onto the "temporary hanging" bolt. The fans should be at the bottom of the unit. Fit the 4 off M10 bolts and torque to 32 Nm ($23.6 \mathrm{ft} . \mathrm{lbf}$).
2. Remove the "temporary hanging" bolt.
3. Refit the fishplates to the DC Busbars. Torque to 55 Nm ($40.6 \mathrm{ft} . \mathrm{lbf}$).
4. Refit the front panel and secure with four screws and washers.
5. Offer up the Control Panel Assembly to the three Phase Assemblies and hang on the central support screws. Secure with M6 x12mm long screws and washers.
6. Reconnect the flying leads of the Control Panel Assembly to the three Phase Assembly units. Refer to page 10.
7. Refit the front cover to the Control Panel Assembly, securing with the screws and washers.
8. Connect the plugs for the control wiring, auxiliary supply and field connections (tighten the screws to secure the field plug). Remake the Protective Earth connections (PE).

Replacing a Fan

There are two fans mounted inside the base of each Phase Assembly. These are hard-wired together and are supplied as an assembly. Replacement of both fans is easy and should take about 15 minutes.

Removal

1. Remove the four screws that hold the bottom fan grille in place.
2. Remove the two screws from each fan.
3. Trace the route of the fan cable back to the front of the phase assembly and remove the fan connector from the phase assembly.
4. Remove the fans and cable assembly from phase assembly.
5. Fit the two fans to the phase assembly and secure with the screws. Hand-tighten.
6. Fit the new fan connector to the front of the phase assembly.

Fan
 Connector

Technical Specifications

Environmental Details	
Operating Temperature	Frame 6: $\quad 0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ Operating temperature is defined as the ambient temperature to the immediate surround of the Converter, when the Converter and other equipment adjacent to it is operating at worst case conditions. Output current values should be derated at 1% per degree Centigrade above rated temperature up to a maximum of $55^{\circ} \mathrm{C}$.
Storage Temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Shipping Temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Product Enclosure Rating	IPOO (Europe) [Frame 1 unit is IP20] UL Open Type (North America/Canada) If the product enclosure is totally enclosed, the exposed metal surface dissipates approximately $50 \mathrm{~W} / \mathrm{m}^{2}$ for a $10^{\circ} \mathrm{C}$ temperature rise of internal air above ambient.
Vibration	Test Fc of EN60068-2-6 $10 \mathrm{~Hz}<=\mathrm{f}<=57 \mathrm{~Hz}$ sinusoidal 0.075 mm amplitude $57 \mathrm{~Hz}<=\mathrm{f}<=150 \mathrm{~Hz}$ sinusoidal lg 10 sweep cycles per axis on each of three mutually perpendicular axis
Altitude	If >500 metres (1650 feet) above sea level, derate Motor Power rating by 1% per 200 metres (660 feet) to a maximum of 5,000 metres (16,500 feet)
Humidity	Maximum 85% relative humidity at $40^{\circ} \mathrm{C}$ non-condensing
Atmosphere	Non flammable, non corrosive and dust free
Climatic Conditions	Class 3k3, as defined by EN60721-3-3 (1995)
Safety Europe North America/Canada Overvoltage Category Pollution Degree	EN50178 (1998), when fitted inside a cubicle UL508C Overvoltage Category III (3-phase supply), Overvoltage Category II (auxiliary supply) Pollution Degree 2

EMC Compliance

All models	European Community Directive 89/336/EEC
All models	EN61800-3 (1997) Table $11:$ conducted emissions when installed in accordance with the instructions in Chapter 3. Refer to "Mounting the Converter".
	EN61800-3 (1997) Immunity requirements
	EN61800-3 (1997) Table 12 Radiated emissions

Electrical Ratings - Power Circuit Refer to Chapter 3: "Earth Fault Monitoring Systems" for circuit breaker details. Motor HP ratings as NEC Table 430-147: "Full Load Current in Amperes, DC Motors"'						
Output Current @ 150\% and 200\% * (A)	Output Current @ 100\% Continuous * (A)	Power @ 500 V dc (kW)	Motor HP @ 500 V dc (HP)	Field Current (A)	Total Losses @ Full Load (W)	Symmetrical Fault Current rms (kA)
1250	1350	600	800	60	4600	100
1600	1750	750	1000	60	5000	100
1950 \#	2150	900	1200	60	6000	100
* The output current figures are given at 100\% Continuous (no overload), and with overloads of 150% for 30 seconds or 200% for 10 seconds. Output current values should be derated at 1% per degree Centigrade above rated temperature up to a maximum of $55^{\circ} \mathrm{C}$. Output current values should be derated at an altitude of 500 metres above sea level at a rate of 1% per 200 metres to a maximum of 5000 metres. \dagger These products are suitable for supplies up to 690 V ac and armature voltages of 750 V dc, hence output power ratings can be increased by up to 150% \# Derated to 1850/1950 on HV assemblies.						

Power Supply Details		
3-Phase Supply	HV Build MV Build	Frame 6 Frame 6
Supply Current	690 V ac $\pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$, line-to-line, ground referenced (TN) and non-ground referenced (IT) 500 V ac $\pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$, line-to-line, ground referenced (TN) and non-ground referenced (IT)	
Field Supply Current	(0.9 x Idc) Amps ac rms	
Field Supply Voltage	(1 x ldc) Amps ac rms (build related)	
3 Phase Input	3-phase rotation insensitive, no adjustment necessary for frequency change	

Auxiliary Power Supply Details

Auxiliary Supply	$115-230 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz} \pm 10 \%$, single phase, Overvoltage Category II
Auxiliary Supply Current:	
SMPS \& Contactor	3A ac rms maximum. Nominal current used for power supplies: 0.5 A at 115 V ac 0.25 A at 230 V ac
	The remainder is available for driving the AC Contactor
Fans	Total of 3A ac maximum, 250W
Contactor Output	3 A maximum at the auxiliary voltage

AC Line Choke Always use the recommended external AC Line Choke (2\% line impedance).				
DC Rating		AC Current	Inductance	SSD Drives Part No.
1250	500 V	1080A	$15 \mu \mathrm{H}$	CO466250U012
	690 V	1080A	$20 \mu \mathrm{H}$	CO466251U012
1600	500 V	1620A	$10 \mu \mathrm{H}$	CO466250U017
	690 V	1620A	$15 \mu \mathrm{H}$	CO466251U017
1950	500 V	1980A	$10 \mu \mathrm{H}$	CO466250U022
	690 V	1980A	$15 \mu \mathrm{H}$	CO466251U022

External AC Supply (RFI) Filters Filters must only be fitted on the mains side of the contactor. AC supply filter part numbers for conformance with BS EN61800-3 Table 9 (1st Env) Restricted Distribution and/or BS EN61000-6-4.		
Armature Current Rating (A)	Total Filter Watt Loss (W)	SSD Filter Part No.
$1350-2150$ (please contact Parker SSD)		

Power Semiconductor Protection Fuses For fuses where compliance to UL Standards are required, refer to Chapter 12: "Installing the Converter" - Requirements for UL Compliance.				
Controller Rating (A)	Line Fuse Rating (A)	SSD Part No.	Limb Fuse Rating	SSD Part No.
1250	1000	CS466260U100	700	CS466261U070
1600	1400	CS466260U140	1000	CS466261U100
1950	1800	CS466260U180	1250	CS466261U125
• the 4Q (590+) units have limb fuses - the $2 Q(591+)$ units have line fuses				

Power Supply Fuses				
Power Board	Identification	Fuse Rating	SSD Part No.	
AH469419Uxxx	FS1, $5 \times 20 \mathrm{~mm}$ glass slow-blow (for auxiliary supply, contactor, fan supply)	3A	CH540033	

Field Fuses		
Identification	Fuse Rating	SSD Part No.
Bussman Zilox 170M 1566	80A	CH570084

Earthing/Safety Details

Grounding	Permanent earthing is mandatory on all units because the earth leakage current exceeds 3.5 mA ac/ 10 mA dc under normal operating conditions. Permanent earthing can be made in two ways:
	1. By using a copper conductor of at least $10 \mathrm{~mm}^{2}$ cross-sectional area. 2. By using a second conductor, through separate terminals electrically parallel to the protective conductor.
Note: Each conductor itself must meet the local requirements for a protective earth	
conductor.	

Terminal Definitions
 (Digital/Analog Inputs \& Outputs)

User inputs/outputs are IEC1131 compliant.

Digital Input	Rated Voltage: - Off Region: input voltage input current - Transition Region: input voltage input current - On Region: input voltage input current Input Impedance Sample Time	```24V dc minimum -3V, maximum 5V minimum not defined, maximum 15mA minimum 5V, maximum 15V minimum 0.5mA, maximum 15mA minimum 15V,maximum 30V minimum 2mA, maximum 15mA 4.7k\Omega 10ms```
Digital Output	Digital Output Voltage	+24V dc
These outputs are active	Digital Output Current	+100mA maximum source
high and source current	Output Update Rate	10 ms
from the terminal to the	Output Impedance	Negligible up to 50 mA load, short circuit protection provided.
load. Thus the load must	Source/Sink	Source
be connected between the	Rated Current	0.1 A
output and the signal	Temporary Overload	None
ground. A free-wheel	Overload Protection	Indefinite
diode is included in the	Overload Recover	Automatic
output to protect the	Reverse Voltage Protection	Yes
output transistor when	Operating Voltage	$<30 \mathrm{~V}$ dc
switching inductive loads such as relays.	Off state leakage current	$<0.4 \mathrm{~mA}$
Analog Input/Output	Input Resolution	12 Bit plus sign, i.e. $10 \mathrm{mV}=0.025 \%$ of full scale deflection
Terminal blocks A, B, and	Output Resolution	10 Bit plus sign, i.e. $10 \mathrm{mV}=0.1 \%$ of full scale deflection
C are located on the control board each block	Input Impedance	$100 \mathrm{k} \Omega$ with a 1 ms filter for Analog I/P (A3) and 2 ms for others.
being a 9 way plug-in	Input Impedance Limit	$\geq 10 \mathrm{k} \Omega$ (signal range -10 V to +10 V)
connector. In addition to	Maximum Input Sample Rate	10 ms (typically), 3ms for Analog I/P 2 (A3)
terminal blocks A, B and	Input Overload Capability	10%, i.e. maximum recognisable voltage 11 V . Analog
C, terminal blocks G and		Tachogenerator input should be applied to Terminal G3 on
when the two option	Output Capacity	10 V at 5 mA . Short circuit protected
modules are fitted on the	Output Update Rate	10 ms mater
control board.	Output Overdrive Capability	10%, i.e. maximum output 11 V

Terminal Information - Control Board

This Control Board is common to all $590+$ units.

Terminal Description	Terminal Function	Signal Level	Configurable	Terminal Number
TERMINAL BLOCK A				
OV (Signal)	Zero Volt Reference	OV	N/A	A1
Analog Input 1	Speed Setpoint No. 1	$+10 \mathrm{~V}=$ Full speed setpoint forward $-10 \mathrm{~V}=$ Full speed setpoint reverse	YES	A2
Analog Input 2	Aux. Speed Setpoint/ Current Demand The function of this input is determined by Digital Input No. 3 at terminal C8. C8 open circuit = Speed Setpoint $\mathrm{C} 8 \mathrm{at}+24 \mathrm{~V}=$ Current Demand	$+10 \mathrm{~V}=$ Full speed setpoint forward $-10 \mathrm{~V}=$ Full speed setpoint reverse in speed setpoint mode. $+10 \mathrm{~V}=100 \%$ Positive current demand. $-10 \mathrm{~V}=100 \%$ Reverse current demand.	NO	A3
Analog Input 3	Ramped Speed Setpoint	$+10 \mathrm{~V}=$ Full speed setpoint $-10 \mathrm{~V}=$ Full speed setpoint reverse	YES	A4
Analog Input 4	Aux. Current Clamp -ve	$+10 \mathrm{~V}=200 \%$ Positive current demand $-10 \mathrm{~V}=200 \%$ Reverse current clamp	YES	A5
Analog Input 5	Main Current Limit/ Aux. Current Clamp + ve The function of analog inputs 4 and 5 is determined by digital Input No. 1 on terminal C6. C6 open circuit: Analog inputs No. $5=$ Main Current Limit. C 6 at +24 V : Analog input No. $5=$ Auxiliary Current Clamp Positive. Analog Input No. $4=$ Auxiliary Current Clamp Negative.		YES	A6
Analog Output 1	Speed Feedback	$+10 \mathrm{~V}=$ Full speed feedback forward. $-10 \mathrm{~V}=$ Full speed feedback reverse.	YES	A7
Analog Output 2	Total Speed Setpoint	$+10 \mathrm{~V}=$ Full speed feedback forward. $-10 \mathrm{~V}=$ Full speed feedback reverse.	YES	A8
Current Meter Output	Buffered Armature Current Output The output can be selected as either Bipolar or Unipolar by the Armature I parameter.	Bipolar Mode $+10 \mathrm{~V}=200 \%$ output current forward. $-10 \mathrm{~V}=200 \%$ output current reverse. Unipolar Mode $+10 \mathrm{~V}=200 \%$ output current.	NO	A9

Terminal Information - Control Board

This Control Board is common to all 590+ units.

Terminal Description	Terminal Function	Signal Level	Configurable	Terminal Number
TERMINAL BLOCK B				
OV (Signal)	Zero Volt Reference	OV	N/A	B1
Not Connected	Not Connected			B2
$\begin{aligned} & +10 \mathrm{~V} D \\ & \text { Reference } \end{aligned}$	User + 10V Reference	+10 V at 10 mA short circuit protected	N/A	B3
-10V DC Reference	User -10V Reference	-10 V at 10 mA short circuit protected	YES	B4
Digital Output 1	Zero Speed Detected The operating level of this output can be modified by the standstill zero threshold parameter to give the desired accuracy of operation	+24 V at zero speed (100mA maximum)	YES	B5
Digital Output 2	Drive Healthy (Drive Operational) This output is true when the controller is Healthy.	+24 V when Healthy (100 mA maximum)	YES	B6
Digital Output 3	Drive Ready This output is true when the controller is ready to function, i.e., "locked" into the mains.	+24 V when Ready (100mA maximum)	YES	B7
Program Stop Input	Program Stop When the Program Stop input is held at +24 V , the drive operates as required by the inputs. When the Program Stop is open circuit or at zero volts, the controller provides a controlled or program stop as defined by the Program Stop parameters.	+24 V drive run OV (o/c) drive program stop Threshold +16V	NO	B8
Coast Stop Input	Coast Stop When the Coast Stop input is at +24 V , the controller operates normally. When the Coast Stop is at zero volts or open circuit, the main contactor is open and the drive no longer operates. The motor coasts to rest.	+24 V drive run OV (o/c) drive coasts to rest. Threshold +16V	NO	B9

Terminal Information - Control Board

This Control Board is common to all 590+ units.

Terminal Description	Terminal Function	Signal Level	Configurable	Terminal Number
TERMINAL BLOCK C				
OV (Signal)	Zero Volt Reference	OV	N/A	C1
External Trip Input	An external interlock or permissive.	External permissive element should be connected to C 1 to run. If not using this feature, connect a jumper between C 1 and C 2 . May be used as an unisolated motor thermal input	NO	C2
Start/Run Input	Start/Run When an input is applied to this terminal, the main contactor will close and the controller will operate provided there are no alarms, program stop/coast stop signals are high and the controller is enabled. When the input is removed the controller will perform a regenerative stop to zero speed. A regenerative stop can only be achieved by a 4 quad regenerative controller; the 2 quad non-regenerative controller will coast to zero speed.	$\begin{aligned} & +24 \mathrm{~V}=\text { True/Run } \\ & 0 \mathrm{~V}(\mathrm{o} / \mathrm{c})=\text { False/Normal Stop } \\ & \text { Threshold }+16 \mathrm{~V} \end{aligned}$	NO	C3
Jog Input	Jog When the Jog Input is held at +24 V , the drive jogs provided input C3 is low. When the Jog Input is removed the drive will ramp down to zero obeying the Jog Ramp Rate.	$\begin{aligned} & +24 \mathrm{~V}=\text { True } / \mathrm{Jog} \\ & 0 \mathrm{~V}=\text { False/Stop } \\ & \text { Threshold }+16 \mathrm{~V} \end{aligned}$	YES	C4
Enable Input	Enable The Enable Input provides a means of electronically inhibiting controller operation. If the enable input is not true all control loops will be inhibited and the controller will not function.	$+24 \mathrm{~V}=\text { True/Enable }$ $\mathrm{OV}=$ False/Inhibit Threshold +16 V	YES	C5
Digital Input 1	Current Clamp Select This input alters the configuration of the current clamps. With no connection, i.e., false, Analog I/P 5 provides a unipolar current limit. When true, Analog I/P5 is the positive current clamp, Analog I/P 4 is the negative current clamp	$+24 \mathrm{~V}=$ True/Bipolar Clamp OV = False/Unipolar Clamp Threshold +16 V	YES	C6

Terminal Information - Control Board

This Control Board is common to all 590+ units.

Terminal Description	Terminal Function	Signal Level	Configurable	Terminal Number
TERMINAL BLOCK C continued				
Digital Input 2	Ramp Hold If the input is held true the S-Ramp output is frozen at the last value irrespective of the Ramped Setpoint Input. When false the S-Ramp Output follows the Ramped Setpoint Input with a delay determined by the Acceleration and Deceleration Ramped time parameters.	$+24 \mathrm{~V}=$ True $/$ Hold $\mathrm{OV}=$ False/Ramp Threshold + 16V	YES	C7
Digital Input 3	Current Demand Isolate This input alters the drive operation from Speed Control to Current Control. When digital input No. 3 is true, analog input No. 2 provides the current demand and the speed loop is disconnected. When false the speed loop is in control and analog input No. 2 is an auxiliary speed setpoint.	$\begin{aligned} & +24 \mathrm{~V}=\text { True/Current } \\ & 0 \mathrm{~V}=\text { False/Speed } \\ & \text { Threshold }+16 \mathrm{~V} \end{aligned}$	YES	C8
+24V Supply	+24V	Maximum output current: 200 mA Note that the maximum combined consumption for digital outputs 1, 2 \& 3 and $C 9$ should not exceed 300 mA . Some typical loads are given below: Microtach : 75mA Relays : 50 mA each Fiber Optic ancillaries: 50 mA each DeviceNet Technology Box : 50mA	N/A	C9

Terminal Information - Power Terminals		
Terminal Description	Terminal Function	Terminal Number
Three phase supply	Drive supply	L1-L3
Armature + Armature -	Drive output to motor armature Drive output to motor armature	$\begin{aligned} & \text { A+ } \\ & \text { A- } \end{aligned}$
External field supply (Red Phase) External field supply (Yellow Phase)	External single phase ac Line 1 input to field bridge. External single phase ac Line 2 input to field bridge. Required AC Input Voltage $=1.11 \times$ Nominal DC Output. The field regulator will control the field current provided that the Nominal DC Output voltage exceeds the field voltage by at least 10%. i.e. $V_{A C}=1.11 \times V_{D C}$ and $V_{D C}=1.1 \times V_{\text {FIELD }}$ therefore $\quad V_{A C}=1.22 \times V_{\text {FIELD }}$ The external AC supply must be fitted with high speed fuses to protect the field regulator. For controllers with 10A field capability 10A fuses should be used, those with 20A field capability 20A fuses, etc. Note: When using an external AC input it is important to have the correct phase relationship on the terminals. The supply must be derived from L1 (Red) and L2 (Yellow) phases directly or indirectly through a transformer. L1 must be connected to FL1, and L2 to FL2.	FL1 FL2
Field Output (DC+) Field Output (DC-)	DC supply for motor field connections. DC supply for motor field connections. The DC output voltage at these terminals will depend upon the AC supply voltage and the mode of field control. Please refer to the Product Manual for details of the drive capability and operation. Maximum drive field output capability is 60A DC.	$\overline{F+}$ F-
External Armature Volts Sense (+) External Armature Volts Sense (-)	This terminal should be connected directly to the positive motor armature terminal. This terminal should be connected directly to the negative motor armature terminal.	MVA+ MVA-
Auxiliary Supply Live 115-230V Auxiliary Supply Neutral	These terminals are the mains input connections for control supply transformer and contactor relay supply	L N
Main contactor coil V AC Main contactor coil V AC	This terminal is internally connected to the auxiliary supply neutral and provides a convenient connection point for the contactor coil neutral connection This terminal is the switched output from the contactor control relay and is derived from the auxiliary supply. The output is internally fused at 3A hence contactor coils having a high pick-up current must be operated via a slave relay. Note: The contacts of the Contactor Control Relay are suppressed by a series connected resistor (680 Ohms) and capacitor (22nF) to protect the relay contacts. Users should be aware that when the contactor Control Relay is "De-energised", a leakage current of approximately 2 mA can be expected and this should be considered when interfacing to these terminals. Typically, there could be the energisation of very sensitive relays.	N C

Terminal Information - Option Boards			
Terminal Description	Terminal Function	Signal Level	Terminal Number
TERMINAL BLOCK G (SWITCHABLE TACHO CALIBRATION OPTION)			
AC Tacho input AC Tacho input + DC Tacho input - DC Tacho input Tacho Out	$\begin{aligned} & \hline A C \\ & A C \\ & +D C \\ & -D C \\ & \text { Calibrated Tacho Output } \end{aligned}$		$\begin{aligned} & \text { G1 } \\ & \text { G2 } \\ & \text { G3 } \\ & \text { G4 } \\ & \text { P3 } \end{aligned}$
(5701 MICROTACH RECEIVE OPTION - PLASTIC)			
Signal Input	Microtach fibre optic input	There are no other connections to this option module. (The 5701 Microtach should be powered by an external 24 V DC at $60 \mathrm{~mA}, 1.4 \mathrm{~W}$.)	F1
(5901 MICROTACH OPTION MODULE - GLASS)			
Signal Input	Microtach fibre optic input	There are no other connections to this option module. (The 5901 Microtach should be powered by an external 24 V DC at $125 \mathrm{~mA}, 3 \mathrm{~W}$.)	F1
TERMINAL BLOCK G (ENCODER OPTION)			
Terminal Block G pinouts will change function depending upon which option board is fitted to the control board. The configuration supplied as standard is with the Switchable Tacho Calibration Option fitted. Further information on the other options may be obtained from the relevant Technical Manual.			
TECHNOLOGY BOX OPTION (SERIAL COMMUNICATIONS)			
Refer to the Technical Manual supplied with the option for details.			

Whiring Requirements for EMC Compliance				
	Power Supply Wire	Motor Wire	External Filter to Converter Wire	Signal/Control Wire
Wire Type (for EMC Compliance)	Unshielded	Shielded/ armored	Replace flying leads with shielded/armored when $>0.6 \mathrm{~m}$	Shielded
Segregation	From all other wiring (clean)	From all other wiring (noisy)	From all other wiring (sensitive)	
Length Limitations With External Filter	Unlimited	50 metres	As short as possible	25 metres
Shield to Ground Connection		Both ends	Both ends	Converter end only

Cooling Fans

Maximum Rated Ambient $\left({ }^{\circ} \mathrm{C}\right)$	Cooling Method	Number of Fans	Fan Voltage	Fan Power	Air Flow per fan
70	Internal fans: 2 per phase assembly	6	$24 \mathrm{~V}, 1.8 \mathrm{~A}$	48 W	215 cfm

Spares				
Drive Model Number		590P/1250/500	590P/1600/500	590P/1950/500
Gantry		590PG/500/0011/UK/000	590PG/500/0011/UK/000	590PG/500/0011/UK/000
Gantry Parts	Door Power Board Field Assembly Fan SMPS	590PXD AH469419U012 LA466030U001 LA466819	590PXD AH469419U012 LA466030U001 LA466819	590PXD AH469419U012 LA466030U001 LA466819
Phase Assembly	Recommended Spare	590PL/1250/500	590PL/1600/500	590PL/1950/500
Phase Assembly Parts	Fuse Suppression Assembly Trigger Board Fan Assembly ACCT Fuse Microswitch	CS466261U100	CS466261U100	CS466261U180
		AH469353U102	AH469353U102	AH469353U102
		AH469354U402	AH469354U402	AH469354U402
		LA469905	LA469905	LA469905
		CO466109U001	CO466109U001	CO466109U001
		DC466265	DC466265	DC466265
Possible Spare Parts	Thyristor Clamp Thermostat	CF469820U016	CF469821U016	CF469822U016
		LA469670U002 CM469898U002	LA469670U002 CM469898U003	LA469670U003 CM469898U004
Drive Model Number		590P/1250/690	590P/1600/690	590P/1950/690
Gantry		590PG/690/0011/UK/000	590PG/690/0011/UK/000	590PG/690/0011/UK/000
Gantry Parts	Door Power Board Field Assembly Fan SMPS	590PXD	590PXD	590PXD
		AH469419U011	AH469419U011	AH469419U011
		LA466030U002	LA466030U002	LA466030U002
		LA466819	LA466819	LA466819
Phase Assembly	Recommended Spare	590PL/1250/690	590PL/1600/690	590PL/1950/690
Phase Assembly Parts	Fuse	CS466261U070	CS466261U100	CS466261U125
	Suppression Assembly Trigger Board Fan Assembly ACCT Fuse Microswitch	AH469353U101	AH469353U101	AH469353U101
		AH469354U401	AH469354U401	AH469354U401
		LA469905	LA469905	LA469905
		CO466109U001	CO466109U001	CO466109U001
		DC466265	DC466265	DC466265
Possible Spare Parts	Thyristor	CF469823U022	CF469824U022	CF469825U022
	Clamp	LA469670U002	LA469670U003	LA469670U003

Spares

Non-Regenerative (2Q)				
Drive Model Number		591P/1250/500	590P/1600/500	590P/1950/500
Gantry		590PG/500/0011/UK/000	590PG/500/0011/UK/000	590PG/500/0011/UK/000
Gantry Parts	Door	590PXD	590PXD	590PXD
	Power Board	AH469419U012	AH469419U012	AH469419U012
	Field Assembly	LA466030U001	LA466030U001	LA466030U001
	Fan SMPS	LA466819	LA466819	LA466819
Phase Assembly	Recommended Spare	590PL/1600/500	590PL/1950/500	591PL/1250/500
Phase Assembly Parts	Fuse	CS466260U140	CS466260U180	CS466260U100
	Suppression Assembly	AH469353U102	AH469353U102	AH469353U102
	Trigger Board	AH469354U202	AH469354U202	AH469354U202
	Fan Assembly	LA469905	LA469905	LA469905
	ACCT	CO466109U001	CO466109U001	CO466109U001
	Fuse Microswitch	Not required	Not required	Not required
Possible Spare Parts	Thyristor	CF469821U016	CF469822U016	CF469820U016
	Clamp	LA469671U002	LA469671U003	LA469671U002
	Thermostat	CM469898U003	CM469898U004	CM469898U002
Drive Model Number		590P/1250/690	590P/1600/690	590P/1950/690
Gantry		590PG/690/0011/UK/000	590PG/690/0011/UK/000	590PG/690/0011/UK/000
Gantry Parts	Door	590PXD	590PXD	590PXD
	Power Board	AH469419U011	AH469419U011	AH469419U011
	Field Assembly	LA466030U002	LA466030U002	LA466030U002
	Fan SMPS	LA466819	LA466819	LA466819
Phase Assembly	Recommended Spare	590PL/1250/690	590PL/1600/690	590PL/1950/690
Phase Assembly Parts	Fuse	CS466260U100	CS466260U140	CS466260U180
	Suppression Assembly	AH469353U101	AH469353U101	AH469353U101
	Trigger Board	AH469354U201	AH469354U201	AH469354U201
	Fan Assembly	LA469905	LA469905	LA469905
	ACCT	CO466109U001	CO466109U001	CO466109U001
	Fuse Microswitch	Not required	Not required	Not required
Possible Spare Parts	Thyristor	CF469823U022	CF469824U022	CF469825U022
	Clamp	LA469671U002	LA469671U003	LA469671U003
	Thermostat	CM469898U002	CM469898U003	CM469898U004

	590PXD Control Board		
	Software Version	Part Number	Status *
	7.x	AH470372U002	CURRENT
	* Do not attempt to upgrade by fitting a later software version Control Board. You may experience hardware compatibility problems. If in doubt, contact SSD Drives.		

Standard Equipment

Power Board Circuit Description - AH469419

Power supplies for the controller are generated from the single phase auxiliary supply via a Switched Mode Power Supply. The incoming supply is directly rectified to provide a high voltage dc power rail. A high voltage transistor switches this rail onto the primary of a high frequency transformer, the output of which is rectified and smoothed to provide the dc power supply rails. The 5 V dc rail is monitored via a reference element and a control signal returned via an opto-isolator to the control element of the high voltage switching transistor. The other dc rails $(-15 \mathrm{~V} \&+24 \mathrm{~V}$ dc) are generated via separate secondary windings which are rectified and smoothed, with individual linear regulators providing $\pm 15 \mathrm{~V}$ dc rail. The SMPS operates over an input voltage range of 115 V to 230 V ac $\pm 10 \%, 50 / 60 \mathrm{~Hz}$.

Power Board LED Trip Information

The HEATSINK TRIP, 3 PHASE FAILED and ACCTS FAILED trips are associated with the following LED indications:

Eight diagnostic LEDs indicate further trip information, and general status of the unit. The LEDs go out to indicate a problem (note that LED1 may also flash as the SMPS attempts to power-up repeatedly, indicating a fault).

Trips		Power Board	
	switched mode power supply on	SMPS OK	O LED1
	\|rigger board connection status	TRIGGER BOARD PRESENT	O LED9
	ac current transformer connection status	ACCTS PRESENT	O LED10
3 PHASE FAILED	thyristor fuses status	THYRISTOR FUSES	O LED11
	field heatsink temperature normal	FIELD THERMOSTAT	- LED12
	L1 Phase Assembly heatsink temperature normal	L1 STACK THERMOSTAT	O LED13
HEATSINK TRIP	L2 Phase Assembly heatsink temperature normal	L2 STACK THERMOSTAT	O LED14
	L3 Phase Assembly heatsink temperature normal	L3 STACK THERMOSTAT	O LED15
	Fans stalled	L* FAN	O Fan LEDS

[^0]
Understanding the Product Code

Model Number

The $590+$ Frame 6 is fully identified using alphanumeric codes which record the attributes of each part. The Product Code appears as the "Model No". Each block of the Product Code is identified as below:

Frame 6 Drive

Control Panel Assembly

Phase Assembly

Issued for compliance with the EMC Directive when the unit is used as relevant apparatus.

This is provided to aid your justification for EMC compliance when the unit is used as a component.

590+

ec Declarations of Conformity

Date CE marked first applied: 11.10.2007

EMC Directive

In accordance with the EEC Directive

2004/108/EC

We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment) is in accordance with the relevant clauses from the following standard:-

* BSEN61800-3 (2004)

Manufacturers Declarations

EMC Declaration

We Parker SSD Drives, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece
of equipment) is in accordance with the relevant clauses from the following standard:-

* BSEN61800-3 (2004)

Machinery Directive

The above Electronic Products are components to be incorporated into machinery and may not be operated alone. The complete machinery or installation using this equipment may only be put into service when the safety considerations of the Directive

89/392/EEC are fully adhered to.
Particular reference should be made to EN60204-1 (Safety of Machinery - Electrical Equipment of Machines).
All instructions, warnings and safety information of the Product Manual must be adhered to.

Dr Martin Payn (Conformance Officer)

* Compliant with the immunity requirements of the Standard without specified EMC filters.
* 690PB only when fitted with an internal or external filter.

PARKER SSD DRIVES

The drive is CE marked in accordance with the low voltage directive for electrical equipment and appliances in the voltage range when installed correctly.

Since the potential hazards are mainly electrical rather than mechanical, the drive does not fall under the machinery directive. However, we do supply a manufacturer's declaration for when the drive is used (as a component) in machinery.

[^0]: * In the event of a trip due to a stalled fan, an unlit fan LED will indicate the failed fan. With the drive stopped, operate the fan fail override switch and restart the drive. Diagnose the failed fan from the fan LEDs status.

